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An independent random cascade measure m is specified by a random generator
(w1,..., wc), E ; wi=1 where c is the branching parameter. It is shown under
certain restrictions that, if m has two generators with a.s. positive components,
and the ratio ln c1/ln c2 for their branching parameters is an irrational number,
then m is a Lebesgue measure. In other words, when c is a power of an integer
number p and the p is minimal for c, then a cascade measure that has the prop-
erty of intermittency specifies p uniquely.
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INTRODUCTION

Intermittency in turbulence is usually expressed in scaling terms of struc-
ture functions. For energy e(Dx) dissipated in a cell Dx, empirical data give

Oe(Dx)qP ’ |D|y(q)+d, |D| ° 1 (1)

where O ·P denotes spatial averaging, |D| is the linear cell size, and d is the
spatial dimension (d=1 in what follows). Intermittency corresponds to
scaling exponents y(q) of a nonlinear type for q > 0. Historically the first
interpretation of intermittency is associated with Richardson’s idea (see,
e.g., ref. 1) as to energy being transmitted from larger to smaller scales
in an inertial range (d, L): L is the external scale, while d ° L is the
Kolmogorov scale at which the dissipation occurs.



The above idea can be formalized by means of the following recursive
procedure which defines an independent random cascade. We denote by
e (n)

a the energy in a cell D (n)
a of level n. Each cell D (n)

a is divided into c equal
subcells of level (n+1); into these the energy e (n)

a is transmitted with
random coefficients

(w1(D (n)
a ),..., wc(D (n)

a )=W(D (n)
a ).

The vectors W(D (n)
a ), which are called breakdown coefficients in the

physics literature, are statistically independent and identically distributed
for different cells D (n)

a of all levels n. Their distribution is specified by the
random vector (or cascade generator) W=(w1,..., wc), for which wi \ 0 and
E ; wi=1, corresponding to the law of conservation of energy in the
average. In what follows we will restrict our consideration to cascade
generators for which P(wg=1) < 1 and P(wg > 0)=1. Here wg is the
normalized random component of the vector W, namely

wg={cwi with probability 1/c, i=1,..., c

and Ewg=1.
On can express many cascade properties in terms of wg. In particular,

the following condition: Ewg logc wg < 1 ensures the existence of a non-
trivial limit of the measures

en(dx)=C
a

e (n)
a 1D

(n)
a

(x) dx/|D (n)|

as n Q .. (2, 3) Following Mandelbrot, (4) the limiting cascade measure e(dx)
is considered as a model of dissipated energy field in turbulence.

Under very general conditions the cascade measure e(dx) has the
intermittency property (1) where ’ denotes logarithmic asymptotics, i.e.,
a ’ b when ln a=log b(1+o(1)) a.s. (5, 6) The scaling exponents in (1) are
closely connected with the function

yH(q)=q − logc Ewq
g − 1, (2)

which represents the heuristic estimate of y(q). It is easily found by replac-
ing e(dx) with the pre-limit measure en(dx), n ± 1 and the spatial averag-
ing O ·P with ensemble averaging, i.e., with the operation of mathematical
expectation E. With large |q| these manipulations lead to false estimates of
y. (5) The true function y(q) is identical with (2) in the interval q ¥ (q− , q+),
only where −. [ q− [ 0 and 1 [ q+ [ .. The function y is linear outside
of (q− , q+) if q− < 0 < 1 < q+: y(q)=a±q. Both lines a±q for finite q± are
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tangent to the curve of yH(q), which uniquely specifies the critical points q−

and q+ as those tangent points closest to 0.
The interpretation of intermittency in terms of cascades uses two

assumptions that are not particularly attractive from the standpoint of
physics:

(a) the ratio of adjacent scales |Dn |/|Dn+1 |, i.e., the cascade’s branch-
ing parameter, is fixed;

(b) the Kolmogorov dissipation scale is zero: d=0.

From (a) it follows that L/d=cN, where c and N are integers. Varying
L, which is natural for many physical objects, we vary c thereby. For this
reason it is desirable to deal with cascades whose statistical properties are
independent of the parameter c. This standpoint has proved fruitful for
resolving the problem of parametrization of empirical y-functions. A broad
class of functions (2) corresponding infinitely divisible random variables
log wg was suggested for practical purposes. (7–11) Any y-function of this type
can be produced by a cascade generator of any dimension. Unfortunately,
a complete description of y-functions that would have the above property is
unknown.

In some applications there are attempts to introduce a scale densifica-
tion in the cascade process. (10, 12) The aim of this modification is twofold: to
get rid of the above assumptions (a, b) and to justify a ‘‘universal class’’ of
cascades. This idea has unfortunately remained without justification.

An opposite viewpoint on the parameter c for turbulent cascades is
contained in ref. 13 where the authors assumed c=2, since the Navier–
Stokes equation involved a nonlinearity of the second order. Based on this
assumption, the authors derive the statistical conclusion that the coeffi-
cients W(D (n)) are interdependent for two adjacent levels n and (n+1) in
actual turbulence. The conclusion lacks experimental corroboration of the
assumed hypothesis c=2. Otherwise it can equally well be regarded as an
artefact.

It is our purpose to show that, under conditions that are natural for
turbulence, the least integer-valued parameter p in the representation
c=pn, n \ 1 is uniquely specified by a cascade measure (c=p=2 in the
case of ref. 13). From this it follows that a locally positive cascade measure
having the intermittency property and a two generators of significantly
different dimensions, i.e., when log c1/log c2 is irrational, does not exist. In
other words, the requirement that the cascade measure be independent of
the branching parameter is much too fine for the phenomenological model
of intermittency. However, if the cascade measure is regarded as the model
of a physical object, the above parameter p in c=pn should have a physical
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meaning, hence an algorithm is required to identify it from the cascade
measure. Such algorithms are unknown to us.

The present study generalizes the results of my previous work. (14)

THE MAIN RESULT

This section consists in the following

Theorem. Suppose a random cascade measure m on [0, 1]=I is
locally positive, i.e., m(D) > 0 a.s. for any subinterval D … I, the total mass
M=m(I) has a second moment, EM2 < ., and q+ > 2. If m has two
generators t ¥ Rc1 and g ¥ Rc2, 0 < c1 < c2, and log c1/log c2 is irrational,
then m is a Lebesgue measure.

Let us comment on the conditions of this theorem. The main
requirements, namely, that m should be locally positive and log c1/log c2

should be irrational are essential. For instance, the cascade generator
W and the tensor product of its independent copies W1 é W2 generate
the same cascade measure having the branching parameters c and c2.
A measure of the type m(dx)=d(x − t) dx where t is a random uniformly
distributed variable on [0, 1] is a cascade measure with a generator of
arbitrary dimension: W=(0,..., 0, 1, 0,..., 0). Here, 1 occupies the ith
position with probability 1/c.

The requirements EM2 < . and q+ > 2 are purely technical in
character and are merely needed in the method of proof we employ. Under
these conditions y(q)=yH(q) for 0 < q < 2. We remind that the tangent to
yH(q) at the point q+ < . passes through (0, 0). To be more specific, the
function −yH(q) is convex, so that one should speak of the support line at
the point q+ < . rather than of the tangent. Judging by empirical evidence
(see, e.g., ref. 1), these requirements do not constitute restrictions on tur-
bulent cascades.

The proof rests on two Lemmas.

Lemma 1. Suppose two vectors t=(t0,..., tc1 − 1) and g=
(g0,..., gc2 − 1), 1 < c1 < c2 with positive components commute with respect
to the tensor product: t é g=g é t. If log c1/log c2 is irrational, then both
vectors have constant components.

Proof of Lemma 1. We write down the commutation condition for
the vectors t and g as follows;

g[q]c2
t{q}c2

=t[q]c1
g{q}c1

, 0 [ q < c1c2, (3)

858 Molchan



where [q]n and {q}n are the integer part and the remainder resulting from
dividing q by n. One has for q=a < c1:

g0ta=t0ga, 0 [ a < c1.

Consequently, one can assume ta=ga, a < c1 without loss of general-
ity; (3) then becomes

g[q]c2
g{q}c2

=g[q]c1
g{q}c1

, 0 [ q < c1c2. (4)

In particular,

gpc1+a=gpga/g0, 0 [ pc1+a < c2, 0 [ a < c1. (5)

Iteration yields

gb/g0=D
k

i=0
(gai

/g0), b=a0+a1c1+ · · · +akck
1 < c2, 0 [ ai < c1, (6)

that is, the vector g can be uniquely reconstructed from the first c1 coordi-
nates.

Suppose D is the greatest common divisor of c1, c2, and D :=(c1, c2)
< c1. One can then find integer a0 < c1/D :=k1 and b0 < c2/D :=k2 such
that a0c2=b0c1+D.

Denote

ap=gb0+p/ga0
, b0+p < c2,

gFr=(grD, grD+1,..., grD+D − 1), 0 [ r < k2.

Since a0 < c1, one has a0c2+b=b0c1+D+b < c1c2 for any 0 [ b < c2.
Hence, using (3) and the above notation, one has:

gb=a[b+D]c1
g{b+D}c1

, 0 [ b < c2. (7)

From (7) it follows that

gFpk1+i=˛apgFi+1, 0 [ i < k1 − 1
ap+1gF0, i=k1 − 1,

(8)

where pk1+i < k2. Put p=0 here. One then arrives at the recurrence
relation

gFi=a0gFi+1, 0 [ i < k1 − 1, (9)
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whence

gFi=a−i
0 gF0, 0 [ i < k1. (10)

From (5) one has

gFpk1+i=(gp/g0) gFi, 0 [ i < k1, pk1+i < k2. (11)

The use of (8), (11), and (9) yields the chain of relations

apgFi+1=(8)
gFpk1+i=

(11) (gp/g0) gFi=
(9) a0(gp/g0) gFi+1 0 [ i < k1 − 1,

where 0 [ pk1+i < k2. Put i=0 here. Then

ap/a0=gp/g0, 0 [ pk1 < k2. (12)

We now make use of (8) with i=k1 − 1:

ap+1gF0=(8)
gFpk1+k1 − 1=(11) (gp/g0) gFk1 − 1=(10) (gp/g0) a−k1+1

0 gF0,

0 [ pk1+k1 − 1 < k2,

i.e.,

ap+1/a0=(gp/g0) a−k1
0 =(12) (ap/a0) a−k1

0 , 0 [ pk1+k1 − 1 < k2,

whence

ap/a0=a−pk1
0 , 0 [ p < (k2+1)/k1, (13)

gp/g0=a−pk1
0 , 0 [ p < k2/k1. (14)

From (10), (11), and (14) one has for r=pk1+i < k2, i < k1:

gFr=
(11) (gp/g0) gFi=

(10) (gp/g0) a−i
0 gF0=(14) a−r

0 gF0,

i.e.,

gFr=a−r
0 gF0, 0 [ r < k2. (15)

The original relations (4) when expressed in terms of the gFi have the
form

g[r]k1
gF{r}k1

=g[r]k2
gF{r}k2

, 0 [ r < c1c2/D.
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Hence in virtue of (15) one has

g[r]k1
a−{r}k10 =g[r]k2

a−{r}k20 . (16)

Let r=k2=pk1+i, i < k1. Then p < k2/k1 and

gpa−i
0 =g1 (17)

or

a−pk1
0 =(14)

gp/g0=(17) (g1/g0) a i
0=(16) a−k1+i

0 .

Hence a0=1. Otherwise pk1=k1 − i or k2=pk1+i=k1, which is impos-
sible.

From (16) and a0=1 one gets

g[r]k1
=g[r]k2

.

One has

gp=g0, 0 [ p < k2/k1

when r=pk1+i < k2 and

gp=g1, k2/k1 < p < 2k2/k1

when k2 < pk1+i < 2k2 and so gp=g0, p < 2k2/k1, since g1=g0.
Proceeding as above, we shall prove in succession that the components

of gF0 are constant. By (15) gFr=gF0, 0 [ r < k2, thus we have the desired
relation g=(g0,..., g0).

Consider the case in which c2 is divisible by c1, i.e., D=c1. Put q=rc1,
r < c2 in (4). One gets

g[r]k2
gc1{r}k2

=grg0=(5)
g[r]c1

g{r}c1
, (18)

where k2=c2/c1. However, if c2 is divisible by c1, then by (4),

gp=gpc1
, 0 [ p < k2,

i.e., gc1{r}k2
=g{r}k2

. Consequently, (18) means that the vectors t=
(g0, g1,..., gc1 − 1) and g=(g0,..., gk2 − 1) commute with respect to the tensor
product. The maximum dimension of the new vectors t and g has
decreased from c2 to max(c1, k2). The problem has reduced to the case
already considered. The process of reducing the dimension of t, g is finite,
terminating when the dimensions c (k)

1 and c (k)
2 are not mutually divisible at
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the stage k. Otherwise, as is easily seen, c1=pk1 and c2=pk2, where
p, k1, k2 are integers. That case is ruled out, because ln c1/ln c2 is irrational.
When c (k)

1 and c (k)
2 are not mutually divisible, induction on k applied to (15)

will demonstrate that g has constant components. Lemma 1 is proven. L

Lemma 1 yields an immediate corollary which will be stated here as
Lemma 2.

Lemma 2. Let a random cascade measure m on I=[0, 1] has two
random generators t=(t0,..., tc1 − 1) and g=(g0,..., gc2 − 1), 0 < c1 < c2, and
ln c1/ln c2 be irrational. If the measure m is locally positive a.s. and
E[m(I)]r < . for some r > 1, then Etr

a =Etr
0 , 0 [ a < c1 and Egr

b=Egr
0 ,

0 [ b < c2. Also,

5 Etr
0

(Et0)r
6

1
ln c1=5 Egr

0

(Eg0)r
6

1
ln c2, (19)

provided 0 < r < q+.

Proof of Lemma 2. It follows from the definition of the random
cascade measure m (4) that it satisfies the following stochastic equation:

m=(d) C zimi p T−1
i (20)

where z=(z0,..., zc − 1) is the generator of m, the mi are independent copies
of m that are statistically independent of z as well, and Tix=(i+x)/c is
a linear mapping of the interval I into Ii=[i/c, (i+1)/c). Note that
m p T−1

i (Ij)=0 for i ] j. The equality m1=(d)
m2 for the two measures means

that the distributions of mi(f ), i=1, 2 are equal for any smooth finite
functions f: R1

Q R1.
Suppose t and g are the generators of m. Use (20) with weights z=t,

and then use the same representation for each measure mi with weights g (i).
The weights g (i) are independent copies of g which are independent of t.
The result is

m=(d) C
0 [ a < c1

ta C
0 [ b < c2

g (a)
b ma, b p T−1

a, b, (21)

where ma, b are independent copies of m that are also independent of t, g (a),
a < c1, while Ta, b is a linear mapping of I into the interval da, b=
[c2a+b, c2a+b+1]/(c1c2), 0 [ a < c1, 0 [ b < c2. Interchanging t and g

in (21), one gets a representation of m that involves the random quantities
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{g̃bŒ} and {t̃ (bŒ)
aŒ } and the intervals dbŒ, aŒ=[c1bŒ+aŒ, c1bŒ+aŒ+1]/(c1c2).

Obviously, one has da, b=dbŒ, aŒ when c2a+b=c1bŒ+aŒ. Consequently,

E[m(da, b)]r=E[tag (a)
b ma, b(da, b)]r=Etr

a Egr
bmr

=E[gbŒt
(bŒ)
aŒ maŒ, bŒ(dbŒ, aŒ)]r=Etr

aŒEgr
bŒmr, (22)

where mr=Emr(I). According to ref. 15, the requirement 0 < mr < .,
r > 1 is equivalent to Etr

a < . (Egr
b < .) for all components of the

generator. It also follows from (22) that the moments are Etr
a > 0, because

m(D) > 0 a.s. for any subinterval of I.
Relation (22) means that the vectors {Etr

a , a=0,..., c1 − 1} and
{Egr

b, b=0,..., c2 − 1} are positive and commute with respect to the tensor
product. The use of Lemma 1 therefore yields the right-hand side of
Lemma 2: Etr

a =Etr
0 , 0 [ a < c1, Egr

b=Egr
0 , 0 [ b < c2. If 0 < r < q+, one

can equate the yH(r) for the generators t and g. From (2) one has

logc1
Etr

g=logc2
Egr

g. (23)

But Etr
g=E ; a tr

a cr − 1
1 with Etr

a =Etr
0 and Eta=Et0=c−1. For this

reason one has Etr
g=Etr

0 /(Et0)r. Similarly, Egr
g=Egr

0 /(Eg0)r. Substi-
tution of these relations in (23) yields (19). L

The proof of the theorem uses another obvious number-theoretic fact
which will be treated as a separate statement.

Statement 3. Suppose that the integer numbers n1 and n2 are not
mutually divisible, and that Ta={n2a}n1

where {k}n is the remainder left
after dividing k by n. One can then find 0 < a < n1 and k(a) > 0 such that
Tk(a)a=a.

Proof of the Theorem. We are going to make use of two represen-
tations of m in the form (21). The one is based on the independent genera-
tors t, g (a), a=0,..., c1 − 1 and the other on g and t (b), b=0,...c2 − 1. Con-
sider the values of m on elements of the partitioning F of [0, 1] into c1c2

equal parts. One then gets equality of distribution for two families of

{tag (a)
b Mab}=(d) {gbŒt

(bŒ)
aŒ MaŒbŒ},

where 0 [ a, aŒ < c1, 0 [ b, bŒ < c2, and Mab are independent copies of m(I)
under the following correspondence between the subscripts:

q(a, b) :=c2a+b=c1bŒ+aŒ.
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Here, q, 0 [ q < c1c2 is the natural numbering of elements of the partioning
F on [0, 1]. As follows from Lemma 2, the moments

E[tag (a)
b Mab]r=Etr

0 Egr
0 mr, r=1, 2,

are independent of a, b. We shall make use of that circumstance for cal-
culating the moments Em(dq) m(dq+1) where dq is an element of F with
index q. The twofold representation (21) for m yields a set of equations. We
want to write it down in compact form by first denoting

aa=Eta − 1ta/Et2
0, bb=Egb − 1gb/(Eg0)2

aF=(a1,..., ac1 − 1), bF=(b1,..., bc2 − 1)

Va=Et2
0/(Et0)2, Vb=Eg2

0/(Eg0)2.

Now note that

Eg (a1)
b1

g (a2)
b2

=˛ (Eg0)2, a1 ] a2

Egb1
gb2

, a1=a2.

Similar equalities also hold for t (b)
a . Consequently, the equations

derived by calculating the moments Em(dq) m(dq+1) in two different ways
have the form X=Y where

X={VbaF; b1, VbaF; b2, VbaF;...; bc2 − 1, VbaF},

Y={VabF; a1, VabF; a2, VabF;...; ac1 − 1, VabF}.

It is our aim to show that the relation X=Y yields Va=Et2
0/(Et0)2

=1, i.e., the variance of t0, hence that of ta, 0 [ a < c1, equals zero. Con-
sequently, the generator t has identical nonrandom components, so that m

is a Lebesgue measure.
From the fact that the first c1 − 1 coordinates of X and Y are equal

one has

Vbai=Vabi, 1 [ i < c1.

For this reason the coordinates of the vectors X and Y in the notation
Vabi=b̃1 have the form

Xr=˛ b̃{r}c1
, {r}c1

] 0 (a)
V−1

a b̃[r]c1
, {r}c1

=0 (b)
(24)

Yr=˛ b̃{r}c2
, {r}c2

] 0 (a)
V−1

b b̃[r]c2
, {r}c2

=0 (b).
(25)
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Putting r=c1k, one derives

bk=˛Vb{c1k}c2
, {c1k}c2

] 0
Ubc1k/c2

, {c1k}c2
=0

(26)

where V=Va, U=Va/Vb. Relation (26) also holds for the bk and b̃k.
Let c2=c r1

1 c −

2 where r1 \ 0 is the maximum multiplicity of c1 in c2.
Consider the case (c −

2, c1) < min(c −

2, c1).
Here, c −

2 > 1, because ln c2/ln c1 is irrational. Put k=cr1
1 p, p < c −

2 in
(26). Then

bcr1
1 p=Vbcr1

1 {c1p}cŒ2
, 1 [ p < c −

2. (27)

According to Statement 3 for the operation Tp={c1 p}c −

2
, one finds

1 [ p0 < c −

2 and k0=k(p0) > 1 such that Tk0p0=p0. Iteration of (27) then
yields

bcr1
1 p0

=Vk0bcr1
1 p0

.

One has ba > 0. Hence V=1, which is the desired result.
One is now entitled to assume that c2=cr1

1 c −

2 and r1 > 0. In that case
the equations X=Y are equivalent to

bp=˛b{p}c1
, (a)

V−1bp/c1
, (b)

b{p}c2/c1
, (c)

Ubp/(c2/c1), (d)

(28)

where 1 [ p < c2.
This can be seen as follows. Equation (28a) can be derived by com-

paring (24a) and (25a); (28b) results from a comparison between (24b) and
(25b); and (28d) from that between (24b) and (25b). A few words are
required to explain (28c). From (24b) and (25a) one has

V−1bb=b{bc1}c2
=bc1{b}(c2/c1)

=V−1b{b}(c2/c1)
.

The last equality in the above sequence follows from the first.
Consider the case (c −

2, c1)=c −

2.
The right-hand side can not be equal to c1, otherwise c −

2 would be
divisible by c1, and the number r1 in the representation c2=c r1

1 c −

2 will not
be the maximum multiplicity of c1 in c2.
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To sum up, one has c2=cr1
1 c −

2, r1 \ 1, and c1=(c −

2) s1 c −

1, s1 \ 1 where
s1 is the maximum multiplicity of c −

2 in c1. Note that c −

1 > 1, otherwise
ln c1/ln c2 would be rational. From (28) one has

Uba =(28d) bacr1 − 1
1 c −

2
=(28b) V1 − r1bac −

2
=(28a) V1 − r1b{ac −

2}c1
. (29)

If r1=1, then c −

2=c2/c1. Therefore,

ba =(28b) Vbac1
=Vba(c −

2)s1 c −

1
=(28c) Vbac −

1
=(28d) Vb{ac −

1}cŒ2
. (30)

Let (c −

1, c −

2) < min(c −

1, c −

2). In that case (30) will yield V=1, similarly to the
above argument.

It can now be assumed that r1 > 1. Put a=(c −

2) s1 aŒ in (29). One then
has from (29):

Ub(c−

2)s1aŒ=V1 − r1b(c −

2)s1 {c −

2aŒ}cŒ1
.

When (c −

2, c −

1) < min(c −

2, c −

1), the standard procedure would yield U=V1 − r1

or Vb=Vr1
a . However, according to Lemma 2,

V ln c2/ln c1
a =Vb. (31)

When Va ] 1, one has ln c2/ln c1=r1, which is impossible. Therefore, one
has Va=1 for the case r1 \ 1 as well, as was to be proved.

We have arrived at the situation in which c2=cr1
1 c −

2, r \ 1, c1=(c −

2) s1 c −

1

and c −

1 is divisible by c −

2. We will show that a set of equations can be
written down that is similar to (28), but where c1 and c2 have been replaced
with c −

1 and c −

2. Also, the coefficients of U, V which have the form Vk1
a Vk2

b

with ki integer will be replaced with similar coefficients. Consequently, the
proof will reduce to the preceding with smaller ci. The reduction process is
finite. It will terminate, when c −

1 is no longer divisible by c −

2. Otherwise
log c2/log c1 will be a rational number.

It remains to find the analog of (28). One has

Ubq =(28d) bc2q/c1
=bcr1 − 1

1 c −

2q =(28b) (V−1) r1 − 1 bc −

2q.

Hence

bp=Ũbp/c−

2
, p < c1c −

2, (32)

where Ũ=UVr1 − 1. Further,

bq =(28b) Vbc1q=Vb(c −

2)s1 c −

1q=(32) VŨ s1bc −

1q,
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which gives the analog of (28b):

bp=V−1
1 bp/c −

1
, p < c −

1c −

2, (33)

where V1=VŨ s1.
From (32, 33) one derives the analog of (28d) with a new coefficient

U1=ŨV1:

Ũbp/(c−

2/c −

1)=
(32) bc −

1p=(33) V−1
1 bp, p < c −

2. (34)

We now are going to derive the analogs of (28a) and (28c). From (28a) one
has

b(c −

2)s1 pŒ=b(c−

2)s1 {pŒ}cŒ1
, pŒ < c −

2c −

1.

The use of (32) on both sides of the above equality will yield

bpŒ=b{pŒ}cŒ1
, pŒ < c −

2c −

1. (35)

Similarly, (28c) yields

bp=b{p}c
1
r1 − 1

cŒ2
.

Substituting p=cr1 − 1
1 pŒ < c2 and using (28b), one gets

bpŒ=b{pŒ}cŒ2
, pŒ < c1c −

2.

Hence one gets for pŒ=c −

1q, q < c −

2 with the help of (33):

bq=b{q}(cŒ2/cŒ1)
. (36)

Relations (33)–(36) are the analog of (28). The proof of the theorem is
complete.
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